
Versioning for Software as a Service in the
context of Multi-Tenancy

Maximilian Schneider and Johan Uhle

July 2013
University of Potsdam, Hasso-Plattner-Institute

Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany
{maximilian.schneider,johan.uhle}@student.hpi.uni-potsdam.de

Abstract. In this report we present our findings on how to provide
different versions of a SaaS to multiple tenants at the same time. We
present a categorization of versioning approaches based on the layer of
the SaaS application stack they are implemented in. We then evaluate
them against our own experiences in developing SaaS applications.

Keywords: computer science, cloud computing, multi-tenancy, saas,
versioning, web application

1 Introduction

The recent trend of providing Software as Software as a Service (SaaS) instead
via the classical retail channels has changed the way that software is versioned.
Previously software was released infrequently and the customer would choose
when to switch to a different version after it was released. But today a Software
as a Service provider is able to release software updates continuously and deploy
them without further action from the customer.

Improving on that, providers may even choose to provide multiple versions at
the same time in order to compare these. A common criterion is testing changes
in the user behavior towards business goals. An example for this is A/B testing
[7]. In these test a subset of the provider’s customers is confronted with a different
version of the interface. This enables the provider to measure statistically which
influence the difference between the versions has on the business based on the
behavior of the different split groups. Another criterion is the technical impact of
a change. This might be regarding the correct behavior of new changes as well as
potential performance degradation. Both can be tested on a subset of the users
in order to verify that they are actually feasible in the production environment.

But SaaS providers do not only provide multiple versions of the same soft-
ware for their own benefit. It is a common phenomenon that users of a software
may be hesitant or even reluctant to adopt a new version. Among the reasons
are that a certain version does not provide enough value to the customer to jus-
tify switching. Further reasons are technical incompatibilities between interfaces
for example if a customer uses an extension which depends on deprecated Ap-
plication Programmable Interface (API) functionality. In these cases the SaaS

2 Maximilian Schneider and Johan Uhle

provider will have to keep the old version available for the customers reluctant
to switch to the newer one.

All these reasons lead us to our research question: How might a SaaS provider
serve different versions of their software to multiple tenants at the same time?
In the following, we discuss terminology (Section 2) and related work (Section 3),
explain our different approaches regarding the architecture (Section 4) and eval-
uate them against our previous experience (Section 5). We finish with an outlook
on future work (Section 6) and the conclusion (Section 7).

2 Terminology

2.1 Multi-Tenancy

Software as a Service products are usually built as multi-user systems. In multi-
tenancy, these users belong to one tenant and need to be isolated from other
tenants’ users. Each tenant has hereby access to an isolated multi-user system
[3]. To sell the products to a wide variety of tenants the software is usually
heavily customizable and secured by Service Level Agreements [2].

Multi-Tenancy itself should not be confused with multi-tenancy architecture
which differs from multi-instance architecture by servicing multiple tenants from
a single instance of the software [12] in contrast to providing a dedicated instance
of the software to each tenant.

2.2 Version

Considering software versioning two different definitions exists. One is the prod-
uct version, which identifies a certain stage of the software in a release lifecycle.
The other is a code revision, which is managed by a version control system as
part of software configuration management [11].

As the latter definition in contrast to the former is mainly dealing with
changes to the source code, differences in code revisions might not be distin-
guishable by the users, whereas product versions are inherently visible to the
users. The distinction between product version and code revision will be made
again in Section 4.5. When we talk about version without specifying the kind,
we refer to product versions.

3 Related Work

As introduction to the topic of Software as a Service, reading the paper [3] is
advised as it discusses the underlying business model and proposes attributes to
classify SaaS.

An argument for the need to run multiple versions of a SaaS due to leg-
islative reasons is made in [2]. The authors also discuss that for a multi-tenant
architecture the software itself has to be written version-aware in order to sup-
port customizing. This in turn increases the code complexity, compared to the

Versioning for Software as a Service in the context of Multi-Tenancy 3

possibility of creating a new instance of the application for each version in a
multi-instance architecture.

The topic of schema versioning has been discussed by [10]. Schema evolution
has also been implemented in the application layer in [14] [6].

A schema versioning scheme has been implemented prototypically in a main-
memory database management system by [1]. Their approach is motivated by
the idea that schema handling should be the responsibility of the database layer
instead of the application layer.

4 Architecture

In this section we first clarify our assumptions about the application stack of a
SaaS, then we explain the different architectures to implement SaaS versioning.

One important assumption we make for versioning is, that each tenant and
therefore also all users of a tenant use the same version at the same time. In
practice this means that each tenant has a dedicated migration point in time at
which they decide to switch the version. This switch affects all their users at the
same time. Users aren’t allowed to individually choose their version.

We furthermore assume that all requests to the SaaS are authenticated, thus
there is always a user as well as a tenant and its version associated with each
request.

4.1 Application stack

Back end

Database

Front end

Fig. 1. Simplified
Application Stack

To understand the architecture better, we first want
to look at the SaaS application stack as displayed in
Figure 1. We derived this stack from our experience with
developing SaaS ourselves as well as stacks we have seen
in related papers as depicted earlier in Section 3.

We assume a separation between the front end, back
end and database layer. The front end layer is mainly
concerned with the user interface. In a SaaS it will usu-
ally be delivered to the user’s browser within a HTTP
request/response cycle. Another possible implementa-
tion for the front end layer is a webservice API that
enables external applications (e.g. third-party or native
applications) to communicate with the SaaS. We handle
this more in-depth in Section 4.4. The back end layer
is concerned with the application and business logic. It
handles requests of the front end layer and consequently
communicates with the database layer. To allow for hor-
izontal scaling, the front end and back end layers are
usually implemented stateless. All state is then kept in
the database layer.

4 Maximilian Schneider and Johan Uhle

To focus our research, we omitted some details of the stack. We were not
concerned with neither caching nor load balancing. Furthermore we omitted
how user management is done, especially with regards to authentication.

4.2 Multi-instance

Application stack

tenant1.provider.com

Application stack

tenant2.provider.com

Application stack

tenant3.provider.com

1.0 1.1 1.0

Fig. 2. Example for multi-instance with the respective software version for each tenant
deployed on their instance

In a multi-instance architecture the whole application stack is deployed sev-
eral times on dedicated resources. You can see an example in Figure 2. The
multi-instance architecture serves the purpose of physical isolation of the ten-
ants by provisioning resources for each tenant individually. Also it allows for
developing a single-tenant application instead of building multi-tenancy aware-
ness into the application.

This approach can also be used for versioning, where we see two variants:

Single instance per tenant When every tenant has their own application stack
instance running, these instances can be versioned by deploying the respective
software version on the tenant’s instance. See Figure 2 for reference.

Single instance per version with multiple tenants This is a hybrid approach
where each instance has a specific version and the instances in turn can be hosts
for multiple tenants by using the shared-instance mechanisms explained in the
following section. See Figure 3 for reference.

Using a multi-instance architecture has the benefits that the developers do not
have to deal with issues concerning multi-tenancy in the application code. One of
the drawbacks is the bad resource consolidation factor, thus if e.g. one tenant uses
many resources but another uses none, the unused resources can’t be allocated
to the spiking tenant easily. The maintenance cost increases with the number of
versions and tenants and also there is then no economy of scale working in favor
of the SaaS provider.

Versioning-wise the actual application stack is not version-aware and thus
can be built without versioning as a concern. Instead versioning is handled on

Versioning for Software as a Service in the context of Multi-Tenancy 5

Application stack

tenant1.provider.com
tenant2.provider.com

Application stack

tenant3.provider.com
tenant4.provider.com

1.0 1.1 2.0

Application stack

tenant5.provider.com

Fig. 3. Example for a hybrid multi-instance approach which is multi-instance regarding
the version, but shared-instance regarding the tenants

the deployment level. Migrations between versions might then need significant
operations engineering effort. Especially in the hybrid approach when data has
to be migrated across application stacks.

4.3 Shared-instance

The shared-instance architecture consist of one software stack deployment that
serves all tenants at the same time. This architecture is the one that is generally
referred to when talking about multi-tenant SaaS applications, since it uses the
economy of scale well due to its high consolidation factor [8] [2] [4].

To investigate versioning in the shared-instance architecture, we will indi-
vidually inspect the layers of the application stack as outlined in the previous
section, consisting of the front end, back end and database layer. For each layer
we will outline how versioning can happen. We are closing this section with a
look at how to migrate between versions.

4.4 Shared-instance: Front end layer

We split the front end layer into two categories: a web application running in the
user’s browser and an API consumer e.g. running on the user’s mobile phone.

4.4.1 Web application In web applications the user’s browser is usually
reloading the whole web page on each request, which mostly is triggered by an
interaction of the user with the system1. Thus there is a tight coupling between
the front end and the back end layer, from which we conclude that they are both
versioned simultaneously. Since the front end software is delivered to the user’s
browser on each request, the versioning concern can be completely handled on
the back end layer as outlined in the next section.

1 We assume that caching works transparently and perfectly as well as ”One page
applications” reloading their assets automatically (”hot code reload”) in case some-
thing on the back end layer changes, as explained in http://www.meteor.com/blog/

2012/02/09/hot-code-pushes

http://www.meteor.com/blog/2012/02/09/hot-code-pushes
http://www.meteor.com/blog/2012/02/09/hot-code-pushes

6 Maximilian Schneider and Johan Uhle

4.4.2 API consumer To allow programmatic access to the SaaS functional-
ity, SaaS providers usually implement a webservice. A common occurrence are
HTTP APIs following the REST principles [5]. These APIs allow native appli-
cations (e.g. mobile phone applications) or other webservices to build on top of
the SaaS. The SaaS and their API consumers are loosely coupled. They follow
their own product cycles. In case of compatibility breaking changes in the SaaS
API, the API consumers have to adapt to the changes and deploy a new version
to their users. This might be hard to do e.g. because users might be reluctant to
updates, delivery cycles might be too long or the API consumer developer might
not have the resources to update their product. This leads us to the conclusion
that SaaS APIs should be able to provide several versions at the same time. The
API consumers choose which version of the API they want to use. There are
many ways to handle versioning APIs and explaining them in-depth is out of
the scope of this report. Examples are version numbers in the URL or HTTP
Accept Header of a request [9], or feature flags for the consumer application in
the SaaS [13] (as explained further in Section 4.5.2).

4.5 Shared-instance: Back end layer

For versioning the back end layer we explore two variants: 1:1 and 1:n.

4.5.1 Shared-instance with 1:1 mapping The 1:1 mapping depicts that
each product version is mapped to one code revision. Figure 4 shows the ar-
chitecture. Thus to support different product versions at the same time, the
respective code revisions have to be deployed on different back end servers. On
each request, the user management decides to which back end servers the request
is routed, depending on the tenant the user belongs to.

The benefit of this approach is, that the versioning is happening outside
of the application code, thus the code does not have to be version-aware. On
the downsides, the consolidation factor of this approach is low, given that the
load is split between non-consolidateable versions. This deficit increases with the
increase of versions running in parallel. Furthermore this leads to a heterogeneous
deployment which is more complex than a homogeneous deployment. Also this
can lead to problems like bugfixes, that if written once have to be merged and
deployed into every running version. Also this approach needs an intelligent
routing layer (in our example above the user management) which decides on
which app server to map which request.

4.5.2 Shared-instance with 1:n mapping The 1:n mapping depicts that
each code revision maps to all available n product versions. As shown in Figure 5
each application server has the same code revision deployed and is therefore
able to decide which product version to serve for each request. One way to
implemented this is with feature flags. Listing 1.1 shows a code example in
Ruby. In the beginning of this section we assumed that every request has a user
attached to it. Furthermore we assumed that all users of a tenant share the

Versioning for Software as a Service in the context of Multi-Tenancy 7

App2App1 App3

DB

Front end

Back end

Versioning

Authentication

User management

Fig. 4. Example for a shared-instance architecture with mapping each back end server
to a code revision which in turn 1:1 maps to a product version

same version. This leads us to the conclusion, that the backend can determine
the version for each incoming request.

The 1:n mapping approach has several benefits: The consolidation factor is
high, since all app servers can serve all requests. The deployment is homogeneous
over the app servers, thus making operations easier. Also it is possible to version
more fine-grained, not only based on product versions but actually on feature
level and even feature version. This opens up a tenant-feature matrix which
allows versioning which is more flexible than the traditional linear versioning.
On the downside, the feature flags in the code increase code complexity, which
might increase development time and increases the probability of bugs. Also
the feature flags are spread over the code and removing them needs software
development effort. Thus abandoning old versions is connected with extra cost.

8 Maximilian Schneider and Johan Uhle

App2App1 App3

DB

Front end

Back end

Versioning Authentication

User management

Fig. 5. Example for a shared-instance architecture with mapping each back end server
to a code revision which in turn can server several product versions

Listing 1.1. Example code for 1:n mapping on an application server

i f user . h a s v e r s i o n ?(” 1 .0 ”)
do something ()

end

i f user . h a s v e r s i o n ?(” 1 .1 ”)
d o s o m e t h i n g a b i t d i f f e r e n t ()

end

Versioning for Software as a Service in the context of Multi-Tenancy 9

4.6 Shared-instance: Database

The database is where state is kept. We assume that the database is a relational
database, in that it keeps the data in tables with specified schemas to ensure the
format and validity of the data.

In this section we will differentiate between two major cases regarding the
database when versioning SaaS: Different versions share a compatible database
schema and different versions require different incompatible schemas.

4.6.1 Different versions share a compatible schema When different ver-
sions share the same database schema, the database is actually agnostic to ver-
sioning. The changes of the versions happen in the other layers and thus never
propagate down to the database. The same happens if changes are needed for
one version, but the changes are compatible with the other versions. An example
for this is the addition of new columns or tables. These can usually be ignored
by versions that don’t need these columns or tables, thus enabling compatibility
with the changed schema.

4.6.2 Different versions require different incompatible schemas When
schemas change between versions in an incompatible way, the database layer has
to be versioned. Current database management systems (DBMS) only support
one schema at a time per table. The concept of an updatable view is theoretically
able to express this. However in our research we learned that implementations
in current DBMS are not, e.g. when using aggregate functions.

As we did not find a DBMS that provides version-aware schemas, though
this topic has been already researched [1], we investigate this option more in
Section 6. Since the database layer can currently not handle the versioning con-
cern, the responsibility lies with the back end layer. Next we will investigate two
approaches for that.

Different tables for each schema To store different schemas, a new database or
table can be created for each version. An example with different tables can be
seen in Listing 1.2. Each tenant is on a specific version, thus their data is stored
in the corresponding table for their respective version.

Listing 1.2. Example SQL code to create queries for supporting three versions of the
users table at the same time

CREATE TABLE use r s v1 (id int (1 1)) ;
CREATE TABLE use r s v2 (id int (11) , username varchar (1 5 0)) ;
CREATE TABLE use r s v3 (id int (11) , user name varchar (2 0 0)) ;

With this approach migrations between versions require moving the data of
a whole tenant from the tables of one version to the tables of another version.
This might include columns or even whole tables that were not changed between
versions. This copying introduces a significant overhead which current DBMS
are not optimized for.

10 Maximilian Schneider and Johan Uhle

Fig. 6. Schema of pivot tables as shown in [15]

Pivot tables Pivot tables as explained in [15] [1] [14] follow the idea of not using
a fixed schema in the database but keeping a flexible schema in the application.
An example table layout can be seen in Figure 6. With pivot tables the DBMS
is used more like a key-value store and in turn the application has to handle
concerns that traditionally belonged to the DBMS, like query optimization or
caching.

4.6.3 Migration of data When a tenant decides to move to a new version
and the new version requires a schema change, then the data of the tenant has
to be migrated from the old to the new schema. Next we will describe two ways
for running these migrations:

Batch-processing migration The data is migrated in one go. Depending on the
database management system, the schema changes and the amount of data this
process might take significant time. Depending on the algorithm used to exe-
cute the migration the database and therefore the whole application might be
completely unavailable or in read-only state for the tenant’s users during the
migration. An example for a migration process that has low interference with
the operations of the application is presented in [6].

On-the-fly migration The data is migrated when it is requested or written to or
from the database. This could mean that a semantic group of data is migrated
in batch when a certain event is triggered e.g. all data belonging to a user is
migrated on log in.

Versioning for Software as a Service in the context of Multi-Tenancy 11

5 Evaluation

We evaluate our findings of the previous sections with our experience in devel-
oping SaaS systems ourselves.

Project A was a multi-user SaaS with over 10 million registered users. It served
a website as well as a REST API from a Ruby on Rails web application backed
by MySQL servers. At one point it was decided to build a new version of the
website, mostly to implement fundamental changes in the user interface. Also
old features were removed or fundamentally changed as well as new features
added. A team was elected to work on the new website, while another team
continued to maintain the old website. Furthermore it was decided to build the
new version as an API client on top of the current REST API. A new code base
with own deployment independent of the current website was created. During
development it showed that the REST API did not support all features needed by
the new version, thus the REST API was extended to support new endpoints.
Also some schema changes were necessary, but they were either additions to
existing tables or new tables. The Ruby on Rails application used Active Record
as an object-relational mapping (ORM) to access the database. Active Record
handles additions to the schema in a forward-compatible way. Thus the schema
changes needed for the new website were 100% backwards compatible with the
old website.

Once deployed, the new version was gradually rolled out the the users. Users
were able to opt-in to the new version, but also to switch back to the old version.
Anonymous users were initially always served the old version, but once the new
version was officially launched all anonymous users got served the new version.
The respective version per user was saved in a cookie. When a user requested
the website, the web server receiving the request decided based on the cookie
information, to which application server the request should be routed.

The versioning in this example happened outside of our architecture propos-
als in the previous Section 4, since the new version became an API client of the
old version. It still relates to the shared-instance 1:1 approach from Section 4.5.1,
since it has application servers per version and a routing layer routing requests
based on versions. Also one of the insights it validates is that schema changes
are possible between versions if they happen in a compatible way.

Project B was a multi-tenant SaaS written in PHP using MySQL servers as
DBMS. During the first years after the launch a lot of feature requests from their
early customers were directly implemented. But when the SaaS reached 30,000
users, it had become too complex to appeal to new customers. It was decided to
rewrite the application in Ruby on Rails in order to simplify it feature-wise and
to redesign the user experience. For the purpose of isolating the two versions
from each other both were deployed to different application stacks.

As the ORM Active Record could not be adapted to the old schema, the
new version relied on a new schema instead. Old customers were able to migrate
all their data from the old to the new system. The other direction, migrating

12 Maximilian Schneider and Johan Uhle

back to the old version, was nevertheless unsupported, because it was regarded
to complex to be solved under economic constraints. The goal was to allow
productive use from the first minute on, so that the customers would not have to
wait in order to try out the new version. But for large customers this data transfer
lasted for multiple hours. Therefore their data had to be copied asynchronously
into the new schema, prioritizing important and regularly used data over the
remaining majority of historic and statistical data.

The new version was in the beginning accessed over a separate subdomain
and it can be classified as a hybrid multi-instance architecture from Section 4.2
with versioning implemented on the access layer. Each version was deployed
to a different application stack but the data of the old version was replicated
to the database servers of the new version in order to allow for fast on-the-fly
migration. The resulting redundancy of data and the completely not consolidated
application servers verify our findings about multi-instance architectures.

6 Future Work

In our research we made two assumptions that simplified our setup but could
yield interesting future work:

Switching versions per user In Section 4.1 we assumed that a tenant chooses the
version for all their users at the same time. Future research should investigate
how versioning on the user-level could be implemented. Especially interesting
would be handling of schema changes as users are not isolated from each other
in contrast to the isolation between tenants.

Caching To build a SaaS that is able to serve many users, caching is an essential
technique. In our research we omitted caching. It would be interesting to inves-
tigate caching more with regards to versioning, especially if cached objects have
to be invalidated during version changes or not.

One of our insights from Section 4.6 was that versioning with schema changes
can currently not be implemented as a concern on the database layer, but instead
has to be handled in the application layer. Depending on the implementation
this might also mean that the schema is not kept by the DBMS anymore, but
rather by the application layer. This might lead to the application not benefiting
from DBMS mechanisms like indices or caching anymore. We believe that further
research in the direction of version-aware database management systems could
be interesting for future work. An example would be that the applications could
specify via a SQL extension which version of a table they want to access. The
DBMS would then take care of using the correct schema as well as arrange the
base data itself, thus relieving the application layer of that concern.

Versioning for Software as a Service in the context of Multi-Tenancy 13

7 Conclusion

In this report we investigated options on how SaaS providers might serve different
versions of their software at the same time. We described in Section 4 how
versioning can be implemented on different layers. We see three architectural
points where the versioning concern can be handled:

– On the access layer with a multi-instance architecture as described in Sec-
tion 4.2

– On the back end routing layer in a shared-instance architecture as described
in Section 4.5.1

– On the back end application layer within the application code in a shared-
instance architecture as described in Section 4.5.2

Implementing versioning on the access layer with a multi-instance architec-
ture provides low consolidation factor, but also makes versioning an operational
problem that can be easily handled if there is a small number of versions and
users. Implementing versioning within the application code provides the highest
consolidation factor, but also requires most engineering effort.

In our research we noticed that versioning is generally thought of as linearly
increasing version numbers, with several feature changes bundled into each ver-
sion. This concept comes from the traditional way of physically shipping software
to the users. With SaaS instantaneously shipping software became possible. This
technically obsoleted the need to bundle features into one big release. Instead
it is now possible to ship features individually. The concept of feature flags (as
explained in Section 4.5.2) then enables a fine-grained control over which tenants
and users get which features, thus enabling versioning in a two-dimensional user-
feature space instead of the traditional linear versioning. This approach enables
faster iteration times and higher adaption to the users’ needs.

All approaches to versioning that involve incompatible schema or data changes
have to consider how to migrate data between versions. These migrations need
a considerable engineering effort to reduce service disruption and service perfor-
mance degradation.

To conclude, we think that versioning is an engineering problem that has
already been solved for many cases. Still especially with regards to versioning
schemas in the database, further research is needed.

References

1. Aulbach, S., Seibold, M., Jacobs, D., Kemper, A.: Extensibility and Data Sharing
in evolving multi-tenant databases. 2011 IEEE 27th International Conference on
Data Engineering pp. 99–110 (Apr 2011), http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=5767872

2. Bezemer, C.P., Zaidman, A.: Multi-Tenant SaaS Applications: Maintenance Dream
or Nightmare? Proceedings of the Joint ERCIM Workshop on Software Evolution
EVOL and International Workshop on Principles of Software Evolution IWPSE
pp. 88–92 (2010), http://dl.acm.org/citation.cfm?id=1862393

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5767872
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5767872
http://dl.acm.org/citation.cfm?id=1862393

14 Maximilian Schneider and Johan Uhle

3. Chong, F., Carraro, G., Microsoft Corporation: Architecture Strategies for
Catching the Long Tail (2006), http://msdn.microsoft.com/en-us/library/

aa479069.aspx

4. Chong, F., Carraro, G., Wolter, R.: Multi-Tenant Data Architecture (2006), http:
//msdn.microsoft.com/en-us/library/aa479086.aspx

5. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures (2000)

6. Keddo, R., Bielohlawek, T., Schmidt, T., SoundCloud: Large Hadron Migrator
(2011), https://github.com/soundcloud/lhm

7. Kohavi, R., Henne, R.M., Sommerfield, D.: Practical guide to controlled exper-
iments on the web: listen to your customers not to the hippo. In: Proceed-
ings of the 13th ACM SIGKDD international conference on Knowledge discov-
ery and data mining. pp. 959–967. KDD ’07, ACM, New York, NY, USA (2007),
http://doi.acm.org/10.1145/1281192.1281295

8. Mietzner, R., Unger, T., Titze, R., Leymann, F.: Combining Different Multi-
Tenancy Patterns in Service-Oriented Applications (2009)

9. R. Fielding, J. Gettys, J.M.: HTTP Version 1.1 (1999), https://www.ietf.org/
rfc/rfc2616.txt

10. Roddick, J.F.: A survey of schema versioning issues for database systems. Infor-
mation and Software Technology 37(7), 383–393 (1995)

11. Scott, J., Nisse, D.: Software configuration management. IEEE Press, Piscataway,
NJ, USA (2001), http://www.computer.org/portal/web/swebok/html/ch7

12. Shao, Q.: Towards Effective and Intelligent Multi-tenancy SaaS. Ph.D. thesis, Ari-
zona State University (2011)

13. Thoughtbot: The Playbook: Feature Flags (2013), http://playbook.thoughtbot.
com/validating-customers/feature-flags/

14. Weissman, C.D., Bobrowski, S.: The design of the force.com multitenant internet
application development platform. Proceedings of the 35th SIGMOD international
conference on Management of data - SIGMOD ’09 p. 889 (2009), http://portal.
acm.org/citation.cfm?doid=1559845.1559942

15. Yaish, H., Goyal, M., Feuerlicht, G.: An Elastic Multi-tenant Database Schema for
Software as a Service. 2011 IEEE Ninth International Conference on Dependable,
Autonomic and Secure Computing pp. 737–743 (Dec 2011), http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6118909

http://msdn.microsoft.com/en-us/library/aa479069.aspx
http://msdn.microsoft.com/en-us/library/aa479069.aspx
http://msdn.microsoft.com/en-us/library/aa479086.aspx
http://msdn.microsoft.com/en-us/library/aa479086.aspx
https://github.com/soundcloud/lhm
http://doi.acm.org/10.1145/1281192.1281295
https://www.ietf.org/rfc/rfc2616.txt
https://www.ietf.org/rfc/rfc2616.txt
http://www.computer.org/portal/web/swebok/html/ch7
http://playbook.thoughtbot.com/validating-customers/feature-flags/
http://playbook.thoughtbot.com/validating-customers/feature-flags/
http://portal.acm.org/citation.cfm?doid=1559845.1559942
http://portal.acm.org/citation.cfm?doid=1559845.1559942
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6118909
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6118909

	Lecture Notes in Computer Science
	Introduction
	Terminology
	Multi-Tenancy
	Version

	Related Work
	Architecture
	Application stack
	Multi-instance
	Shared-instance
	Shared-instance: Front end layer
	Web application
	API consumer

	Shared-instance: Back end layer
	Shared-instance with 1:1 mapping
	Shared-instance with 1:n mapping

	Shared-instance: Database
	Different versions share a compatible schema
	Different versions require different incompatible schemas
	Migration of data

	Evaluation
	Future Work
	Conclusion

